

MITTEILUNGEN

Heft 2/2014

Die Sitka-Fichte

eine schnellwachsende Baumart auch im deutschen Küstenklima

Dr. Dr. habil. Matthias Noack

Natürliche Verbreitung und Erscheinung

Das natürliche Verbreitungsgebiet der nach der Insel Sitka im Alexander-Archipel des US-Bundesstaates Alaska benannten Sitka-Fichte (Picea sitchensis [BONGARD] CARRIÈRE) ist ein ca. 3.800 km langer und im Mittel nur 40 km breiter Streifen entlang der nordwestamerikanischen Pazifikküste zwischen dem 60. und 40. nördlichen Breitengrad (Abbildung 1). In diesem

wegen seines Nebelreichtums auch als "Fogbelt" (deutsch: Nebelgürtel) bezeichneten Küstenstreifen besiedelt sie meeresnahe Tiefebenen bzw. Tallagen und dringt selten in Höhenlagen von über 300 m über NN vor.

Die Sitka-Fichte (Abbildung 2) gilt als die wüchsigste Fichtenart weltweit. Bei Jahresniederschlägen über 1.400 mm und Jahresmitteltemperaturen zwischen 4 und 12°C sind Höhen von ca. 100 m und Durchmesser von über 5 m bei einem Höchstalter von 800 Jahren möglich. Selten im Reinbestand, sondern hauptsächlich zusammen mit Hemlocktanne (Tsuga heterophylla), Riesen-Lebensbaum (Thuja plicata) und Douglasie (Pseudotsuga menziesii) bildet sie die leistungsfähigsten Waldgesellschaften Nordamerikas mit Holzvorräten über 2.000 m³ pro Hektar (Abbildungen 3 und 4). Wegen ihrer monumentalen, landschaftsprägenden Erscheinung, aber auch ob ihrer enormen wirtschaftlichen Bedeutung ist sie der offizielle Staatsbaum Alaskas.

Abbildung 2: Botanische Merkmale

Abbildung 3: Pazifikküstenurwald bei Quiniault, Pseudotsuga menziesii, Picea sitchensis und Thuja plicata (v. l. n. r.); Foto: Frank H. LAMB und The Jones Photo Co., entnommen aus SCHENCK, C. A. (1939)

Abbildung 4: Urwaldgruppe von Picea sitchensis im Nebelgürtel von Lincoln County;

Foto: John D. CRESS, entnommen aus SCHENCK, C. A. (1939)

/

Standortökologie

Das standortökologische Optimum der Sitka-Fichte liegt im temperierten und superhumiden Küstenklima. Wintermilde, Niederschlags- und Nebelreichtum sowie ein relativ ausgeglichener Jahrestemperaturgang sind hierfür genauso charakteristisch wie tiefgründige, nährkräftige, gut wasserversorgte und durchlüftete Böden. Wichtig ist, dass der Standort dauerhaft dem hohen Wasserversorgungsanspruch der Sitka-Fichte gerecht wird und der Boden für die arttypische Flachwurzel den notwendigen Entfaltungsraum bietet. Die küstentypischen starken Windbewegungen und hohen Meersalzgehalte der Luft beeinträchtigen die Sitka-Fichte vergleichsweise wenig, was sich in einer geringen Außenrandstufigkeit von zur offenen See exponierten Beständen äußert (Abbildung 5). Auch vermag sie temporäre Salz- und Süßwasserüberflutungen relativ lange zu erdulden. Dauerhafte Staunässe ist hingegen schädlich.

Bezüglich der jugendlichen Schattentoleranz gilt die Sitka-Fichte als Intermediärbaumart zwischen der lichtbedürftigeren Douglasie und der eher schattentoleranteren Hemlocktanne. Vitale Naturverjüngungen entwickeln sich daher besonders in lockeren Mutterbeständen auf hinreichend wasserversorgten Standorten, wenn die Samen auf freiliegenden Mineralboden, lockere Humus-Mineralbodengemische oder frische Astmoosdecken fallen.

Holzmerkmale und –verwendung

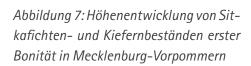
Sitkafichtenholz ist vergleichsweise leicht. Mit einer Rohdichte im Bereich von 0,38–0,47 g/cm³ zählt es wie das der Kiefer, Lärche, Douglasie, Fichte und

Abbildung 5: Bestandessaumausprägungen von Rot-Buche (Vordergrund) und Sitka-Fichte (Hintergrund) im unmittelbaren Kontaktbereich zur Ostsee; Foto: NOACK (2010)

Pappel zur Gruppe der leichten Holzarten. Da es zugleich auch eine außerordentlich hohe Festigkeit aufweist, hat es sich in der Bauindustrie als Schnittund Konstruktionsholz vielfach bewährt und findet breite Verwendung. Darüber hinaus werden beste Qualitäten im Flugzeug-Leichtbau, bei der Herstellung von Windradrotorblättern sowie wegen hochgeschätzter Resonanzeigenschaften auch im Musikinstrumentebau genutzt. Seine guten physikalischen Eigenschaften und seine mild-warme Farbe prädestinieren es ferner für den Türen-, Fenster- und Möbelbau. Weitere Produkte sind Masten, Stative, Trockenfässer. Leitern und Holzschliff für die Papierindustrie.

Erscheinung im Ostseeküstenraum Mecklenburg-Vorpommerns

In Europa spätestens ab dem Jahr 1831 als eingeführt geltend, erfolgte die erste Anpflanzung der Sitka-Fichte auf deutschem Boden im Forstgarten der königlichen Oberförsterei Jägerhof nahe der Stadt Wolgast im Jahr 1842. Bis zum Beginn des bestandesweisen Versuchs-


anbaues fremdländischer Baumarten durch die noch jungen forstlichen Forschungsanstalten im Jahre 1881 beschränkte sich der Sitkafichtenanbau nur auf Einzelexemplare in Solitärarboreten. Außerordentlich positive Versuchsergebnisse vor allem in den Küstengebieten beförderten fortan ihren forstlichen Anbau. Mit einer deutlichen Konzentration auf den unmittelbaren Küstenraum stockt sie heute in Mecklenburg-Vorpommern auf ca. 2.500 ha, was einem Waldflächenanteil von ca. 0,5 % entspricht. Die Bestände sind überwiegend das Ergebnis von Wiederaufforstungen nach Windwürfen der 1950er und 1960er Jahre auf zur Verdämmung durch Bodenflora neigenden Nassstandorten in Seenähe.

Vom Geovegetationspotenzial, vom Standort und von der Landnutzungsgeschichte bestimmt, lassen sich heute drei Sitkafichten-Ökosystemtypen als ökologische Elementareinheiten der Waldvegetation feststellen. Spezifische Struktur-, Stabilitäts- und Regenerationsmerkmale sowie physiologische Prozesse machen diese künstlichen Forstgesellschaften zu am Vegetationsbild erkennbaren waldbaulichen Befundund Gestaltungseinheiten. Sie sind wie folgt charakterisiert:

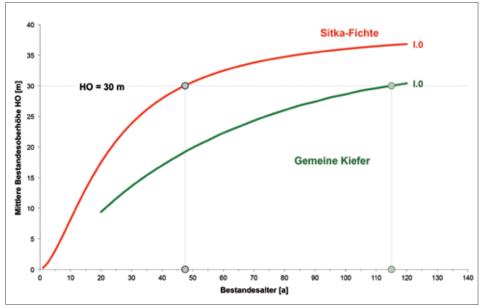

	Pfeifengras-	Faulbaum-Pfeifengras-	Himbeer-
Forsttyp	-	I	
Boden	Dauerfeuchte mineralische Naßstandorte armer bis ziemlich armer Trophie in Sandniederungen	Stau- und wechselfeuchte meso- bis oligotrophe Sand- böden jungpleistozäner Sanderebenen	Mittelfrische nährkräftige Moränenböden mit guter Wasserspeicherkapazität und überdurchschnittlich luftfeuchtem sowie nieder- schlagsreichem (>630 mm pro Jahr) Küstenklima
Humus	Feuchtrohhumus	Feuchtrohhumusmoder	Moder
Bonität (Oberhöhe [m] im Alter 100)	28	32	34
Gesamtwuchsleistung (Schaftholz [m³/ha], Alter 70)	800	900	1.000
Mittl. Artenzahl	21	26	28

Abbildung 6: Stärkste Sitka-Fichte Mecklenburg-Vorpommerns im Forstamt Schuenhagen; Foto: NOACK (2010)

Grundsätzlich fällt das Sitkafichtenwachstum im mit nur ca. 600 mm pro Jahr erheblich niederschlagsärmeren Wuchsraum im Vergleich zu ihren extrem standortsfeuchten Heimatverhältnissen deutlich geringer aus. Die Spitzendimensionen einzelner Bäume liegen momentan bei 45 m Höhe und 150 cm Brusthöhendurchmesser im Alter von ca. 120 Jahren (Abbildung 6). Trotzdem ist sie hier als außerordentlich schnellwüchsig und ertragskundlich leistungsstark einzuschätzen. Wie keine andere Baumart im Nordostdeutschen Tiefland vereint sie auf geeigneten Standorten eine herausragende Schnellwüchsigkeit (Abbildung 7), frühe Zieldurchmessererreichung und hohe Volumenproduktion. (Tabelle A-1 bis A-4 auf Seite 8 bis 11).

Regionaltypische Risiken, Chancen und waldbauliche Behandlung

In einigen Regionen entlang der Ostseeküste Mecklenburg-Vorpommerns kam es seit den 1990er Jahren immer wieder zu Vitalitätsproblemen vor allem in mittelalten Sitkafichtenbeständen, der Phase höchsten Wasserbedarfs. Sie äußerten sich als Kronenverlichtungen durch Nadelschütten, punktuelle Harzaustritte im Erdstammbereich, ringförmige Plätzefraße (Harzringe) im mittleren Schaftdrittel, Trieblängenverkürzungen und Zopftrocknis. Bei leichter Schadintensität und Witterungsgunst erholten sich die Bäume. Im entgegengesetzten Fall kam es oftmals zum Absterben (Abbildung 8).

Als Ursache gelten die im Komplex wirkenden Schaderreger Wurzelschwamm (Heterobasidion annosum), Hallimasch (Armillaria mellea), Sitka-Laus (Elatobium abietinum), Brauner Fichtenbock (Tetropium fuscum) und besonders Rie-

senbastkäfer (Dendroctonus micans). Schadfördernd wirken vor allem Störungen der nachhaltigen Wasserversorgung, wobei heiße, trockene Sommer oder schädliche Grundwasserregulierungen am bedeutungsvollsten sind. Diese wirken umso gravierender, je geringer die bodenbürtige Fähigkeit zur nachhaltigen Wasserversorgung ausgeprägt ist. Daher sollten sorptionsschwache Talsand-, Schwemmsand-, Flugsand- und Dünenstandorte aufgrund ihrer ungünstigen Bodenwasserverhältnisse für den Anbau der Sitka-Fichte nicht mehr vorgesehen werden.

Kann der hohe Feuchteanspruch der Sitka-Fichte durch den gewählten Standort dauerhaft gewährleistet werden, ist sie aufgrund ihrer Schnellwüchsigkeit eine wirtschaftlich besonders lukrative Alternative zu den heimischen Baumarten, selbst auf Böden mit geringerer Nährkraft. Darüber hinaus zeichnet die Sitka-Fichte ein besonderes ertragskundliches Merkmal aus. Das frühe Erreichen der gewünschten Zieldurchmesser (gewöhnlich bei 40 cm) bereits ab dem dritten Lebensjahrzehnt fällt mit dem Zeitpunkt der höchsten Bestandesvolumenproduktion zusammen. Folglich können die Bäume geerntet werden, wenn die Bestände ihre größte Produktivität erreicht haben.

Bei der Kulturbegründung ist die Sitka-Fichte vergleichsweise konkurrenzstark gegenüber den standorttypisch sehr vitalen Bodenfloren. Ihre raue Rinde, Nadelspitzigkeit und starke Astigkeit bewahren sie zudem weitgehend vor Verbiß- und Schälschäden. Die regionalspezifischen Winterfröste schaden ihr gewöhnlich nicht, lediglich extreme Spätfröste können vor allem Jungwüchse beeinträchtigen.

Praktikererfahrungen bestätigen, dass der Verjüngungsdruck von Sitkafichten-Naturverjüngungen auf heimische Waldpflanzenarten standortspezifisch erscheint. Eine deutliche Neigung zur Massenvermehrung ist lediglich im Bereich der bodensauren, grundfeuchten Buchenwälder gegeben. Hier erreicht die Naturverjüngung der Sitka-Fichte jedoch nicht die Intensität der spätblühenden Traubenkirsche (Prunus serotina) und wird zudem von der Rot-Buche noch beherrscht.

Bei Kunstverjüngungen haben sich Lochpflanzungen 3- bis 4jähriger Pflanzen bewährt. Die empfohlene Ausgangspflanzenzahl zwischen 2.500 und 3.000 Stück pro Hektar mildert erfahrungsgemäß die ausgeprägte Neigung der Sitka-Fichte zur Grobast- und Zwieselbildung (Abbildung 9) ab und befördert zugleich ihr Dickenwachstum sowie ihre Sturmfestigkeit. Der früher verbreitete Wurzelschnitt sollte nicht mehr erfolgen, da die meisten Feinwurzelneubildungen an Wurzeln dritter und vierter Ordnung erfolgen.

Ab dem Zeitpunkt der Herausbildung erster marktfähiger Sortimente wird

Abbildung 8: Typische Schadbilder an Sitka-Fichten im Ostseeküstenraum Mecklenburg-Vorpommerns; Fotos: Noack (2010)

Abbildung 9: Starkastige Sitka-Fichte im Weitstand und Zwieselbildung im Erdstammbereich; Fotos: JESCHKE (2008)

aufgrund der besonderen ökologischen Eigenschaften der Sitka-Fichte im Reinbestand (Halbschattbaumart, rasantes Jugendwachstum, frühe Zuwachskulmination, starke Interzeptionsverdunstung) und der wuchsraumspezifischen Standortmerkmale (relativ geringer Niederschlag, regelmäßige trocken-heiße Sommer, ungünstige ökologische Wasserbilanz) eine gestaffelte Niederdurchforstung empfohlen. Dabei handelt es sich um eine frühzeitig einsetzende und kräftig begonnene waldbauliche Pflege, die sich im fortschreitenden Bestandesalter hinsichtlich Intensität (Wiederkehr) und Stärke abschwächt.

Sie zielt darauf ab, den Nebenbestand aus beherrschten und zunehmend unterständigen Bäumen rasch zu entnehmen und auf diese Weise wirkungsvoll zur Reduktion der unproduktiven Interzeptionsverdunstung beizutragen. Darüber hinaus geführte Baumentnahmen im herrschenden Hauptbestand sollen einen lockeren Kronenschluss herstellen, der eine maximale Zuwachsentfaltung und bestmögliche Gesunderhaltung der dominantesten Bäume ermöglicht.

Im weiteren Verlauf der Bestandesentwicklung liegt dann das Augenmerk auf selektiven Bedrängerentnahmen zur optimalen individuellen Kronenentfaltung der leistungsfähigsten und vitalsten Bäume. Unter Beachtung der im Baumholzstadium regionalspezifisch ausgeprägten Borkenkäferdisposition sind übermäßige Auflichtungen des Kronendaches und vor allem mit ihnen einhergehende starke Schaftbesonnungen zu vermeiden.

Auch wenn die Sitka-Fichte bislang im Waldbau des deutschen Küstenraumes nur wenig Beachtung fand, machen ihre besonderen Eigenschaften sie hier zu einer forstlich anbauwürdigen Baumart. Ihre kleinflächenweise Integration in einen stabilen Mischwald setzt jedoch voraus, dass der Standort im weitesten Sinne ihren hohen Anspruch an die Standortfeuchte erfüllt. Neben den dafür notwendigen atmosphärischen Merkmalen kommt es dabei besonders auf die dauerhafte Wasserversorgung sichernde Bodeneigenschaften an.

Weiterführende Literatur

1. HARRIS, A. S. (1990):

Sitka spruce. In: Burns, R. M. & Honkala, B. H. (1990): Silvics of North America: 1. Conifers. Agriculture Handbook 654, U. S. Dept. of Agriculture, Forest Service. Washington D. C. vol. 2, 877 S.

2. LOCKOW, K.-W. (2002):

Ergebnisse der Anbauversuche mit amerikanischen und japanischen Baumarten. In: Ausländische Baumarten in Brandenburgs Wäldern. Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Landes Brandenburg (Hrsg.): 41–101.

3. LÜDEMANN, G. H. (1998):

Schnellwachsende Baumarten in Wald und Landschaft Norddeutschlands. Gesellschaft zur Förderung schnellwachsender Baumarten in Norddeutschland e. V. (Hrsg.). 144 S.

4. NOACK, M (2014):

Waldbaulich-standortökologische Untersuchungen zur Sitka-Fichte (Picea sitchensis [BONGARD] CARRIÈRE) im Ostseeraum des Landes Mecklenburg-Vorpommern als Beitrag für eine zukunftsgerechte forstliche Ressourcennutzung. Dissertation. Fakultät Umweltwissenschaften, Technische Universität Dresden. Schriftenreihe Agrarwissenschaftliche Forschungsergebnisse, Bd. 55. Verlag Dr. KOVAC, Hamburg. 354 S.

5. PETERSON, E. B.; PETERSON, N. M.; WEETMAN, G. F.; MARTIN, P. J. (1997):

Ecology and management of Sitka spruce, emphasizing its natural range in British Columbia. UBC Press (University of British Columbia), Vancouver, British Columbia, Canada.

6. RÖHE, P.; Mehl M.; Gehlhar, U.; Schulz, H. (1997):

Die forstlich wichtigsten nichtheimischen Baumarten in Mecklenburg-Vorpommern. Mitteilungen aus dem Forstlichen Versuchswesen Mecklenburg-Vorpommern, Heft 1/1997, S. 35 – 39.

7. SCHOBER, R. (1962):

Die Sitka-Fichte. J. D. Sauerländer`s Verlag Frankfurt am Main.

8. STRATMANN, J. (1988):

Ausländeranbau in Niedersachen und den angrenzenden Gebieten. Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt 91.

Tabelle A-1:

gemäß des Wuchsmodells "Sitka-Fichte – gestaffelte Niederdurchforstung 2010"; Bonität: HO100 36 m (1.0) für die Sitka-Fichte an der Ostseeküste Mecklenburg-Vorpommerns Waldwachstumskundliche Bestandeskennwerte

nität: 1.0		dGZ _{SH}	[m'/ha a]	16,9	19,3	20,2	20,3	19,9	19,3	18,5	17,8	17,0	16,2	15,5	14,9	14,2	13,6	13,1	12,5	12,1	11,6	11,2	10,8	10,4
höhenbor		GWLSH	[m'/ha]	338	482	909	710	962	867	927	276	1020	1056	1087	1114	1137	1158	1176	1192	1206	1219	1230	1240	1249
Relative Oberhöhenbonität: I.0		% ^{HS} A∩S	[56]	6	21	28	31	34	36	37	38	39	40	40	41	41	41	42	42	42	42	42	42	43
Rel	pue	SUVSH	[m//ha]	31	103	167	223	270	310	344	373	397	418	436	452	466	478	489	498	506	514	521	527	532
	Gesamtbestand	SG (8	[m³/ha a]		2,10	1,72	1,41	1,15	0,94	8,70	9,0	99'0	0,47	0,40	0,35	06,0	0,26	0,23	0,20	0,18	0,16	0,14	0,13	0,12
	Ge	ZV _{SH} %	[%]		9,4	6,5	4,7	3,5	2,7	2,1	1,7	1,4	1,2	1,0	8,0	2,0	9,0	6,0	6,0	0,4	0,4	0,3	6,0	6,0
		ZVSH	[m/ha a]		28,9	24,7	20,7	17,2	14,3	12,0	10,1	8,5	7,2	6,2	5,4	4,7	4,1	3,6	3,2	2,8	2,5	2,3	2,0	1,8
		V _{SH}	[m/ha]		451	503	542	573	297	617	634	647	629	699	878	685	692	869	703	708	712	716	719	722
		g	[m/ha]		48,9	49,5	50,0	50,4	50,8	51,2	51,5	51,9	52,1	52,4	52,7	52,9	53,1	53,3	53,4	53,6	53,7	53,9	54,0	54,1
		νом	[m//ha]		70	64	55	47	40	34	28	24	21	18	16	14	12	11	6	8	7	7	9	5
	stand	V _{SH}	[m'/ha]		72	64	99	47	40	34	29	25	21	18	16	14	12	11	6	8	8	7	9	9
	Ausscheidender Bestand	0	[m//ha]		8,1	9'9	5,3	4,3	3,5	2,9	2,4	2,0	1,7	1,5	1,3	1,1	1,0	8,0	8,0	0,7	9'0	9,0	0,5	0,4
	scheid	z	[n/ha]		330	197	124	83	28	42	31	24	19	15	12	10	80	7	9	2	2	4	4	е
	Aus	DG	[cm]		17,6	20,6	23,3	25,8	28,0	29,9	31,6	33,0	34,3	35,5	36,5	37,4	38,2	38,9	39,68	40,1	40,6	41,1	41,5	41,9
		HDG	[m]		17,0	19,3	21,2	22,7	23,9	24,9	25,7	26,4	27,0	27,4	27,9	28,2	28,5	28,8	29,1	29,3	29,5	29,6	29,8	29,9
		V	[m³/ha]	305	378	437	485	523	554	579	900	617	632	644	655	664	672	629	989	691	969	700	704	708
		V _{SH}	[m³/ha]	307	379	439	487	526	557	583	605	623	638	651	662	672	680	687	694	669	705	709	713	717
		ဗ	[m³/ha]	38,5	40,9	42,9	44,7	46,1	47,3	48,3	49,1	49,8	50,4	6'09	51,4	51,8	52,1	52,4	52,7	52,9	53,1	53,3	53,5	53,7
	stand	DG	[cm]	20,3	24,7	28,8	32,6	36,1	39,1	41,8	44,2	46,2	48,1	49,7	51,1	52,3	53,4	54,4	55,3	56,1	56,9	57,5	58,1	58,7
36 m	nder Be	00	[cm]	27,9	32,4	36,7	40,7	44,3	47,5	50,3	52,8	54,9	56,8	58,5	0,09	61,3	62,5	63,5	64,5	65,3	66,1	66,7	67,4	6,79
t HO ₁₀₀ :	Verbleibender Bestand	z	[n/ha]	1184	854	658	533	451	393	352	321	297	278	263	251	241	232	225	219	214	209	205	202	199
nbonită	Ve	HG	[m]	16,3	19,7	22,4	24,5	26,2	27,6	28,7	29,7	30,5	31,1	31,7	32,2	32,6	33,0	33,3	33,6	33,8	34,1	34,2	34,4	34,6
Absolute Oberhöhenbonität HO ₁₀₀ : 36		HDG	[m]	16,2	19,5	22,1	24,3	26,0	27,3	28,5	29,4	30,2	30,9	31,4	31,9	32,3	32,7	33,0	33,3	33,5	33,7	33,9	34,1	34,3
lute Ob		유	[m]	17,5	21,0	23,8	26,1	27,9	29,4	30,6	31,6	32,5	33,2	33,8	34,3	34,7	35,1	35,5	35,8	36,0	36,2	36,5	36,6	36,8
Absc		A	[6]	20	25	30	35	40	45	20	55	09	65	70	75	80	85	90	96	100	105	110	115	120

Tabelle A-2:

gemäß des Wuchsmodells "Sitka-Fichte – gestaffelte Niederdurchforstung 2010"; Bonität: HO100 32 m (II.0) für die Sitka-Fichte an der Ostseeküste Mecklenburg-Vorpommerns Waldwachstumskundliche Bestandeskennwerte

			-																					
nităt: II.(dGZsH	[m³/ha a]	14,4	16,6	17,5	17,6	17,2	16,7	16,0	15,3	14,6	13,9	13,3	12,7	12,1	11,6	11,1	10,6	10,2	8,8	9,4	9,1	8,7
rhöhenbo		GWL _{SH}	[m'/ha]	287	415	524	615	069	751	801	842	876	902	930	950	968	983	266	1008	1019	1028	1036	1043	1049
Relative Oberhöhenbonität: II.0		SUV _{SH} %	[36]	10	21	27	31	33	34	36	37	37	38	38	38	38	39	39	40	40	40	40	40	40
ĕ	tand	SUVSH	[m//ha]	30	88	142	188	227	259	286	308	327	342	356	387	377	386	393	400	406	411	416	420	423
	Gesamtbestand	SZ	[m'/ha a]		1,92	1,57	1,26	1,02	0,82	79'0	0,55	0,45	0,38	0,32	0,27	0,23	0,20	0,17	0,15	0,13	0,12	0,10	60'0	80,0
	ğ	% H≅AZ	[%]		6'6	6,7	4,8	3,5	2,6	2,0	1,6	1,3	1,0	6'0	2,0	9,0	9,0	0,4	0,4	6,0	6,0	0,3	0,2	0,2
		ZVSH Z	[m//ha a]		25,6	21,9	18,2	14,9	12,2	10,0	8,3	6,9	5,8	4,9	4,1	3,6	3,1	2,7	2,3	2,0	1,8	1,6	1,4	1,3
		VSH	[m/ha] [m		385	436	473	502	524	542	929	999	629	287	594	601	909	611	615	619	622	625	627	630
								9																
	L	9	a] [m//ha]		46,5	46,9	47,3	47	47,9	48,2	48,4	48,7	48,9	49,1	49,2	49,4	49,5	49,7	49,8	49,9	50,0	50,1	50,2	50,2
		V	[m//ha]		57	52	45	38	32	27	22	19	16	13	1	10	6	7	7	9	2	2	4	4
	estand	> HS	[m//ha]		29	53	46	39	32	27	22	19	16	13	12	10	6	7	7	9	2	2	4	4
	Ausscheidender Bestand	စ	[m"/ha]		7,4	6,0	8,	3,8	3,1	2,5	2,0	1,7	1,4	1,2	1,0	6'0	2,0	9,0	9'0	0,5	0,4	0,4	0,3	0,3
	sscheid	z	[n/ha]		400	241	152	101	70	20	37	28	22	18	14	12	10	80	7	9	2	2	4	3
	Aus	DG	[cm]		15,3	17,8	20,0	22,0	23,6	25,1	26,4	27,4	28,4	29,1	29,8	30,4	31,0	31,4	31,8	32,2	32,5	32,8	33,1	33,3
		HDG	[m]		14,9	17,1	18,9	20,3	21,4	22,3	23,0	23,6	24,1	24,5	24,9	25,2	25,4	25,6	25,8	26,0	26,2	26,3	26,4	26,5
		V	[m"/ha]	254	325	381	426	461	490	512	531	546	559	569	578	586	592	598	603	607	611	615	618	620
		V _{SH}	[m"//ha]	257	326	382	427	463	492	515	534	550	563	574	583	591	282	603	809	613	617	620	623	626
		9	[m³/ha]	36,9	39,1	41,0	42,5	43,8	44,8	45,7	46,4	47,0	47,5	47,9	48,2	48,5	48,8	49,0	49,2	49,4	49,6	49,7	49,8	49,9
	stand	DG	[cm]	17,8	21,4	24,9	28,0	30,7	33,1	35,1	36,9	38,4	39,7	40,8	41,8	42,6	43,3	44,0	44,6	45,1	45,5	45,9	46,3	46,6
32 m	nder Be	00	[cm]	25,2	29,0	32,6	35,9	38,7	41,2	43,3	45,2	46,7	48,1	49,2	50,3	51,1	51,9	52,6	53,2	53,7	54,5	54,6	55,0	55,3
Absolute Oberhöhenbonität HO100: 32 m	Verbleibender Bestand	z	[n/ha]	1484	1084	844	692	591	522	472	434	406	384	367	352	341	331	323	316	310	305	300	296	293
nbonită	Ve	HG	[m]	14,0	17,2	19,8	21,8	23,4	24,7	25,7	26,6	27,3	27,8	28,3	28,7	29,1	29,4	29,6	29,8	30,0	30,2	30,4	30,5	30,6
erhöhe		HDG	[m]	13,9	17,1	19,6	21,6	23,2	24,5	25,5	26,3	27,0	27,6	28,1	28,5	28,8	29,1	29,3	29,6	29,8	29,9	30,1	30,2	30,3
lute Ob		유	[m]	15,0	18,4	21,2	23,3	25,0	26,4	27,4	28,3	29,1	29,7	30,2	30,6	31,0	31,3	31,6	31,8	32,0	32,2	32,3	32,5	32,6
Abso		۷	[a]	20	25	8	35	40	45	20	55	8	65	70	75	80	85	90	95	100	105	110	115	120

Tabelle A-3:

gemäß des Wuchsmodells "Sitka-Fichte – gestaffelte Niederdurchforstung 2010"; Bonität: HO100 28 m (III.0) für die Sitka-Fichte an der Ostseeküste Mecklenburg-Vorpommerns Waldwachstumskundliche Bestandeskennwerte

nität: III.0		dGZSH	[m³/ha a]	12,0	14,1	15,0	15,1	14,8	14,3	13,7	13,0	12,4	11,8	11,2	10,7	10,2	9,7	9,2	8,8	8,5	8,1	7,8	7,5	7,2
höhenbo		GWLSH	[m³/ha]	239	352	449	528	592	643	684	717	744	766	784	799	812	823	832	840	847	853	858	863	867
Relative Oberhöhenbonität: III.0		SUV₅н%	[%]	13	22	27	30	32	33	34	35	36	36	37	37	37	37	38	38	38	38	38	38	38
Re	tand	SUVSH	[m³/ha]	30	78	122	159	190	215	236	253	266	278	287	295	302	307	312	317	320	323	326	329	331
	Gesamtbestand	SZ	[m'/ha a]		1,77	1,44	1,14	0,89	0,70	0,58	0,45	96,0	0,29	0,24	0,20	0,17	0,14	0,12	0,11	60'0	80'0	0,07	90'0	0,05
	g	% ⊮s∧Z	[%]		10,8	7,1	4,9	3,5	2,5	1,9	1,5	1,2	6'0	2'0	9'0	9'0	0,4	0,4	6,0	6,0	0,2	0,2	0,2	0,2
		ZVSH	[m³/ha a]		22,5	19,4	15,9	12,8	10,2	8,2	9'9	5,4	4,4	3,6	3,0	2,6	2,2	1,9	1,6	1,4	1,2	1,1	6'0	8,0
		Vsн	[m³/ha]		321	371	406	433	453	469	481	491	200	506	512	517	521	525	528	531	533	535	537	538
		9	[m³/ha]		44,2	44,6	44,8	45,0	45,2	45,3	45,5	45,6	45,8	45,9	46,0	46,1	46,2	46,3	46,4	46,5	46,5	46,6	46,6	46,7
		V _{DH}	[m³/ha]		45	43	37	31	25	20	17	14	11	6	89	7	9	2	4	4	ဗ	3	2	2
	stand	VSH	[m³/ha]		48	44	37	31	25	21	17	14	11	6	80	7	9	2	4	4	က	က	2	2
	Ausscheidender Bestand	9	[m//ha]		8,8	5,5	4,3	3,3	2,6	2,1	1,6	1,3	1,1	6'0	2,0	9,0	9,0	4,0	0,4	0,3	0,3	0,3	0,2	0,2
	sscheid	z	[n/ha]		488	295	185	122	83	29	43	33	22	20	16	13	Ε	6	7	9	2	2	4	4
	Au	DG	[cm]		13,3	15,3	17,2	18,7	20,0	21,1	22,0	22,8	23,4	24,0	24,4	24,8	25,1	25,4	25,7	25,9	26,1	26,2	26,4	26,5
		HDG	[m]		12,8	15,0	16,6	17,9	18,9	19,7	20,3	20,8	21,3	21,6	21,9	22,1	22,3	22,5	22,6	22,7	22,8	22,9	23,0	23,1
		V _{DIH}	[m³/ha]	203	271	325	368	401	427	447	463	476	486	495	502	208	513	517	521	524	527	529	531	533
		V _{SH}	[m³/ha]	209	274	327	369	402	428	448	464	478	488	497	504	510	515	520	524	527	530	532	534	536
		g	[m"/ha]	35,3	37,4	39,1	40,5	41,7	42,6	43,3	43,8	44,3	44,7	45,0	45,3	45,5	45,7	45,9	46,0	46,1	46,2	46,3	46,4	46,5
	stand	DG	[cm]	15,5	18,6	21,5	24,0	26,2	28,0	29,5	30,8	31,9	32,8	33,5	34,1	34,7	35,2	35,5	35,9	36,2	36,5	36,7	36,9	37,1
28 m	nder Be	00	[cm]	22,8	26,0	29,1	31,7	34,0	35,9	37,5	38,8	39,9	40,9	41,6	42,3	42,9	43,4	43,8	44,1	44,4	44,7	45,0	45,2	45,4
t HO ₁₀₀ :	Verbleibender Bestand	z	[n/ha]	1863	1375	1080	895	773	069	631	588	555	530	510	494	482	471	462	455	448	443	438	434	430
nbonită	Ve	HG	[m]	11,7	14,8	17,3	19,2	20,7	21,9	22,8	23,5	24,1	24,6	24,9	25,3	25,5	25,8	26,0	26,1	26,3	26,4	26,5	26,6	26,7
Absolute Oberhöhenbonität HO100: 28 m		HDG	[m]	11,6	14,7	17,1	19,0	20,5	21,7	22,6	23,3	23,9	24,3	24,7	25,0	25,3	25,5	25,7	25,9	26,0	26,1	26,2	26,3	26,4
lute Of		유	[m]	12,6	15,9	18,5	20,5	22,1	23,3	24,3	25,1	25,7	26,2	26,6	26,9	27,2	27,5	27,7	27,8	28,0	28,1	28,2	28,3	28,4
Absc		A	[a]	20	25	30	35	40	45	20	55	09	65	70	75	80	85	06	96	100	105	110	115	120

Tabelle A-4:

gemäß des Wuchsmodells "Sitka-Fichte – gestaffelte Niederdurchforstung 2010"; Bonität: HO100 24 m (IV.0) für die Sitka-Fichte an der Ostseeküste Mecklenburg-Vorpommerns Waldwachstumskundliche Bestandeskennwerte

ăt: IV.0		dGZ₃н	[m³/ha a]	2,6	11,7	12,5	12,7	12,5	12,0	11,4	10,9	10,3	2,6	9,2	8,8	8,3	6,7	7,5	7,2	6,9	9'9	6,3	6,1	5,8
ıöhenbonit		GWLSH	[m³/ha]	194	291	376	445	498	540	572	597	617	633	646	929	665	672	878	683	687	691	694	697	669
Relative Oberhöhenbonität: IV.0		SUV _{SH} %	[%]	17	24	28	30	32	33	33	34	34	35	35	35	35	36	36	36	36	36	36	36	36
Rel	and	SUVSH	[m³/ha]	32	69	104	133	157	176	191	203	212	220	226	231	235	239	241	244	246	248	249	251	252
	Gesamtbestand	SZ	[m²/ha a]		1,61	1,31	1,02	0,78	0,59	0,45	0,35	0,27	0,22	0,18	0,14	0,12	0,10	90'0	0,07	90'0	0,05	0,04	0,04	0,03
	ğ	ZVsH %	[%]		12,0	9'2	5,0	3,4	2,4	1,8	1,3	1,0	8,0	9'0	9,0	0,4	0,3	0,3	0,2	0,2	0,2	0,1	0,1	0,1
		ZVSH	[m³/ha a]		19,5	16,9	13,7	10,7	8,3	6,5	5,0	4,0	3,2	2,6	2,1	1,7	4,1	1,2	1,0	6,0	2,0	9,0	5,0	9,0
		VSH	[m³/ha]		259	307	341	365	383	396	406	414	421	426	430	434	437	439	442	443	445	446	448	449
		o	[m²/ha]		6,14	42,3	45,4	42,5	42,5	42,6	42,7	42,8	42,8	42,9	43,0	43,0	43,1	43,2	43,2	43,2	43,3	43,3	43,3	43,4
	Ī	VDH	[m³/ha]		34	33	59	23	19	15	12	6	7	9	2	4	ო	ო	2	2	2	2	-	-
	tand	V _{SH}	[m³/ha]		37	35	30	24	19	15	12	6	80	9	2	4	က	ဗ	2	2	2	2	-	-
	Ausscheidender Bestand	o	[m³/ha]		6,2	2,0	3,8	2,9	2,2	1,7	1,3	1,0	8,0	9,0	9,0	0,4	0,4	0,3	6,0	0,2	0,2	0,2	1,0	0,1
	scheide	z	[n/ha]		588	361	225	145	6	68	49	36	27	21	17	13	=	6	7	9	2	2	4	е
	Aus	DG	[cm]		11,5	13,3	14,7	15,9	16,9	17,7	18,4	18,9	19,3	19,6	19,9	20,1	20,3	20,5	20,6	20,7	20,8	20,9	21,0	21,1
		HDG	[m]		10,7	12,8	14,3	15,5	16,4	17,1	17,6	18,0	18,4	18,6	18,8	19,0	19,1	19,3	19,4	19,4	19,5	19,6	19,6	19,7
		V _{DH}	[m²/ha]	153	218	270	310	340	363	380	393	404	412	419	424	428	432	435	438	440	442	443	445	446
		V _{SH}	[m³/ha]	162	223	272	311	341	364	381	394	405	413	420	425	430	433	437	439	441	443	445	446	447
		O	[m²/ha]	33,9	35,8	37,3	38,6	39,6	40,4	40,9	41,4	41,8	42,0	42,3	42,5	42,6	42,7	42,9	42,9	43,0	43,1	43,1	43,2	43,2
	stand	DG	[cm]	13,6	16,2	18,5	20,6	22,3	23,7	24,8	25,7	26,4	27,0	27,5	27,8	28,2	28,4	28,7	28,9	29,0	29,2	29,3	29,4	29,5
: 24 m	nder Be	00	[cm]	20,8	23,5	26,0	28,1	29,9	31,4	32,5	33,4	34,2	34,8	35,3	35,7	36,0	36,3	36,6	36,8	36,9	37,1	37,2	37,3	37,4
it HO ₁₀₀	Verbleibender Bestand	z	[n/ha]	2332	1744	1383	1159	1013	916	848	799	763	736	714	697	684	673	664	657	650	645	640	637	633
nbonit	Š	HG	[m]	9,4	12,4	14,8	16,6	17,9	19,0	19,8	20,4	20,8	21,2	21,5	21,8	22,0	22,1	22,3	22,4	22,5	22,6	22,6	22,7	22,7
Absolute Oberhöhenbonität HO100: 24 m		HDG	<u>m</u>	6,3	12,3	14,6	16,4	17,8	18,8	19,6	20,2	20,6	21,0	21,3	21,5	21,7	21,9	22,0	22,2	22,3	22,3	22,4	22,5	22,5
olute O		오	[<u>m</u>	10,1	13,3	15,8	17,7	19,2	20,3	21,1	21,7	22,2	22,6	23,0	23,2	23,4	23,6	23,7	23,9	24,0	24,1	24,1	24,2	24,3
Abs		۷	<u>e</u>	20	52	30	32	40	45	20	22	9	65	70	75	8	82	8	92	100	105	110	115	120

Tabelle A-5:

Abkürzungsverzeichnis der Bestandesmerkmale in den Tabellen A-1 bis A-4

	Merkmal	Symbol
	Alter	A
	Oberhöhe nach ASSMANN	НО
	Höhe des Grundflächenmittelstammes	HDG
e	Grundflächenmittelhöhe nach LOREY	HG
end	Stammzahl	N
bleibend	Oberdurchmesser nach ASSMANN in Brusthöhe (1,30 m)	DO
Verbleibender Bestand	Durchmesser des Grundflächenmittelstammes in Brusthöhe (1,30 m)	DG
	Grundfläche in Brusthöhe (1,30 m)	G
	Schaftholzvolumen	V _{SH}
	Derbholzvolumen	V _{DH}
	Höhe des Grundflächenmittelstammes	HDG
Ausscheidender Bestand	Durchmesser des Grundflächenmittelstammes in Brusthöhe (1,30 m)	DG
Scheider	Stammzahl	N
Sest	Grundfläche in Brusthöhe (1,30 m)	G
Auss	Schaftholzvolumen	V _{SH}
	Derbholzvolumen	V _{DH}
	Grundfläche in Brusthöhe (1,30 m)	G
9	Schaftholzvolumen	V _{SH}
stan	laufender jährlicher Schaftholzvolumenzuwachs	ZV _{SH}
Gesamtbestand	laufender jährlicher Grundflächenzuwachs	ZG
san	Summe der Vornutzungen an Schaftholz	SUV _{SH}
ő	Gesamtwuchsleistung Schaftholzvolumen	GWL _{SH}
	durchschnittlicher Gesamtzuwachs Schaftholzvolumen	dGZ _{SH}

Mitteilungen der Gesellschaft zur Förderung schnellwachsender Baumarten in Norddeutschland e.V.

- Verzeichnis bisher erschienener Hefte:

Heft1/2013 - LOCKOW K. W.; LOCKOW J.:

Die Robinie (Robinia pseudoacacia L.) eine schnellwachsende Baumart mit wertvollen Holzeigenschaften, 8 S.

IMPRESSUM

Herausgeber: Gesellschaft zur Förderung schnellwachsender Baumarten in Norddeutschland e. V.

Redaktion: Dr. Peter Röhe

Vorstand: Dr. Peter Röhe (Vorsitzender), Horst Buschalsky, Franz Isfort

Geschäftsstelle: Birgit Freda Dubenbrok 20, 23701 Eutin

Tel.: 04521-1521, Fax: 04521- 830330 E-Mail: ibm.freda@t-online.de **Erarbeitung des Fachbeitrages:** Die Sitka-Fichte – eine schnellwachsende Baumart auch im deutschen Küstenklima von Dr. Dr. habil. Matthias Noack

Satz/Druck:

cw Nordwest Media Verlagsgesellschaft mbH Große Seestraße 11, 23936 Grevesmühlen Tel.: 03881-2339, Fax: 03881- 79143 E-Mail: info@nwm-verlag.de www.nwm-verlag.de

Auflage: 1000 Exemplare

Bezug: Bitte von der Internetseite der Gesellschaft zur Förderung für schnellwachsender Baumarten in Norddeutschland e.V.:

www.gesellschaft-schnellwachsende-baumarten.de als pdf-Datei herunterladen oder zum Preis von 5,- Euro inkl. Porto beim Verlag bestellen.